正常关闭和清理


示例 20-20 中的代码通过使用线程池异步响应请求,正如我们所希望的那样。我们收到了一些关于 worker 的警告, idthread 字段,我们没有以直接的方式使用它们来提醒我们 我们没有清理任何东西。当我们使用不太优雅的 ctrl - c 方法来停止主线程,所有其他线程也会立即停止,即使它们正在处理请求。


接下来,我们将实现 Drop trait 以在池中的每个线程上调用 join,以便它们可以在关闭之前完成正在处理的请求。然后,我们将实现一种方法来告诉线程它们应该停止接受新请求并关闭。为了查看此代码的实际效果,我们将修改服务器以仅接受两个请求,然后正常关闭其线程池。


ThreadPool 上实现 Drop 特征


让我们从在线程池上实现 Drop 开始。当池被丢弃时,我们的线程应该全部加入以确保它们完成工作。示例 20-22 显示了 Drop 实现的第一次尝试;这段代码还不能完全工作。


文件名: src/lib.rs

use std::{
    sync::{mpsc, Arc, Mutex},
    thread,
};

pub struct ThreadPool {
    workers: Vec<Worker>,
    sender: mpsc::Sender<Job>,
}

type Job = Box<dyn FnOnce() + Send + 'static>;

impl ThreadPool {
    /// Create a new ThreadPool.
    ///
    /// The size is the number of threads in the pool.
    ///
    /// # Panics
    ///
    /// The `new` function will panic if the size is zero.
    pub fn new(size: usize) -> ThreadPool {
        assert!(size > 0);

        let (sender, receiver) = mpsc::channel();

        let receiver = Arc::new(Mutex::new(receiver));

        let mut workers = Vec::with_capacity(size);

        for id in 0..size {
            workers.push(Worker::new(id, Arc::clone(&receiver)));
        }

        ThreadPool { workers, sender }
    }

    pub fn execute<F>(&self, f: F)
    where
        F: FnOnce() + Send + 'static,
    {
        let job = Box::new(f);

        self.sender.send(job).unwrap();
    }
}

impl Drop for ThreadPool {
    fn drop(&mut self) {
        for worker in &mut self.workers {
            println!("Shutting down worker {}", worker.id);

            worker.thread.join().unwrap();
        }
    }
}

struct Worker {
    id: usize,
    thread: thread::JoinHandle<()>,
}

impl Worker {
    fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
        let thread = thread::spawn(move || loop {
            let job = receiver.lock().unwrap().recv().unwrap();

            println!("Worker {id} got a job; executing.");

            job();
        });

        Worker { id, thread }
    }
}


示例 20-22:当线程池超出范围时加入每个线程


首先,我们遍历每个线程池 worker。我们为此使用 &mut 是因为 self 是一个可变引用,我们还需要能够改变 worker。对于每个 worker,我们打印一条消息,说明这个特定的 worker 正在关闭,然后在该 worker 的线程上调用 join。如果对 join 的调用失败,我们使用 unwrap 使 Rust panic 并进入非体面关闭。


以下是我们在编译此代码时遇到的错误:

$ cargo check
    Checking hello v0.1.0 (file:///projects/hello)
error[E0507]: cannot move out of `worker.thread` which is behind a mutable reference
  --> src/lib.rs:52:13
   |
52 |             worker.thread.join().unwrap();
   |             ^^^^^^^^^^^^^ ------ `worker.thread` moved due to this method call
   |             |
   |             move occurs because `worker.thread` has type `JoinHandle<()>`, which does not implement the `Copy` trait
   |
note: `JoinHandle::<T>::join` takes ownership of the receiver `self`, which moves `worker.thread`
  --> /rustc/eeb90cda1969383f56a2637cbd3037bdf598841c/library/std/src/thread/mod.rs:1778:17

For more information about this error, try `rustc --explain E0507`.
error: could not compile `hello` (lib) due to 1 previous error


该错误告诉我们,我们不能调用 join,因为我们只有每个 worker 的可变借用,并且 join 获得了其参数的所有权。为了解决这个问题,我们需要将线程移出拥有 thread 因此 join 可以使用该线程。我们在示例 17-15 中是这样做的:如果 Worker 持有一个 Option<thread::JoinHandle<()>> ,我们可以调用 take 方法将值移出 Some 变体,并在其位置保留 None 变体。换句话说,正在运行的 Workerthread 中将具有 Some 变体,当我们想要清理 Worker,我们将 Some 替换为 None,这样 Worker 就没有要运行的线程。


所以我们知道我们想要更新 Worker 的定义,如下所示:


文件名: src/lib.rs

use std::{
    sync::{mpsc, Arc, Mutex},
    thread,
};

pub struct ThreadPool {
    workers: Vec<Worker>,
    sender: mpsc::Sender<Job>,
}

type Job = Box<dyn FnOnce() + Send + 'static>;

impl ThreadPool {
    /// Create a new ThreadPool.
    ///
    /// The size is the number of threads in the pool.
    ///
    /// # Panics
    ///
    /// The `new` function will panic if the size is zero.
    pub fn new(size: usize) -> ThreadPool {
        assert!(size > 0);

        let (sender, receiver) = mpsc::channel();

        let receiver = Arc::new(Mutex::new(receiver));

        let mut workers = Vec::with_capacity(size);

        for id in 0..size {
            workers.push(Worker::new(id, Arc::clone(&receiver)));
        }

        ThreadPool { workers, sender }
    }

    pub fn execute<F>(&self, f: F)
    where
        F: FnOnce() + Send + 'static,
    {
        let job = Box::new(f);

        self.sender.send(job).unwrap();
    }
}

impl Drop for ThreadPool {
    fn drop(&mut self) {
        for worker in &mut self.workers {
            println!("Shutting down worker {}", worker.id);

            worker.thread.join().unwrap();
        }
    }
}

struct Worker {
    id: usize,
    thread: Option<thread::JoinHandle<()>>,
}

impl Worker {
    fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
        let thread = thread::spawn(move || loop {
            let job = receiver.lock().unwrap().recv().unwrap();

            println!("Worker {id} got a job; executing.");

            job();
        });

        Worker { id, thread }
    }
}


现在,让我们依靠编译器来查找其他需要更改的地方。检查此代码,我们得到两个错误:

$ cargo check
    Checking hello v0.1.0 (file:///projects/hello)
error[E0599]: no method named `join` found for enum `Option` in the current scope
  --> src/lib.rs:52:27
   |
52 |             worker.thread.join().unwrap();
   |                           ^^^^ method not found in `Option<JoinHandle<()>>`
   |
note: the method `join` exists on the type `JoinHandle<()>`
  --> /rustc/eeb90cda1969383f56a2637cbd3037bdf598841c/library/std/src/thread/mod.rs:1778:5
help: consider using `Option::expect` to unwrap the `JoinHandle<()>` value, panicking if the value is an `Option::None`
   |
52 |             worker.thread.expect("REASON").join().unwrap();
   |                          +++++++++++++++++

error[E0308]: mismatched types
  --> src/lib.rs:72:22
   |
72 |         Worker { id, thread }
   |                      ^^^^^^ expected `Option<JoinHandle<()>>`, found `JoinHandle<_>`
   |
   = note: expected enum `Option<JoinHandle<()>>`
            found struct `JoinHandle<_>`
help: try wrapping the expression in `Some`
   |
72 |         Worker { id, thread: Some(thread) }
   |                      +++++++++++++      +

Some errors have detailed explanations: E0308, E0599.
For more information about an error, try `rustc --explain E0308`.
error: could not compile `hello` (lib) due to 2 previous errors


让我们解决第二个错误,它指向 工人::新;当我们创建一个新的 Worker 时,我们需要将 thread 值包装在 Some 中。进行以下更改以修复此错误:


文件名: src/lib.rs

use std::{
    sync::{mpsc, Arc, Mutex},
    thread,
};

pub struct ThreadPool {
    workers: Vec<Worker>,
    sender: mpsc::Sender<Job>,
}

type Job = Box<dyn FnOnce() + Send + 'static>;

impl ThreadPool {
    /// Create a new ThreadPool.
    ///
    /// The size is the number of threads in the pool.
    ///
    /// # Panics
    ///
    /// The `new` function will panic if the size is zero.
    pub fn new(size: usize) -> ThreadPool {
        assert!(size > 0);

        let (sender, receiver) = mpsc::channel();

        let receiver = Arc::new(Mutex::new(receiver));

        let mut workers = Vec::with_capacity(size);

        for id in 0..size {
            workers.push(Worker::new(id, Arc::clone(&receiver)));
        }

        ThreadPool { workers, sender }
    }

    pub fn execute<F>(&self, f: F)
    where
        F: FnOnce() + Send + 'static,
    {
        let job = Box::new(f);

        self.sender.send(job).unwrap();
    }
}

impl Drop for ThreadPool {
    fn drop(&mut self) {
        for worker in &mut self.workers {
            println!("Shutting down worker {}", worker.id);

            worker.thread.join().unwrap();
        }
    }
}

struct Worker {
    id: usize,
    thread: Option<thread::JoinHandle<()>>,
}

impl Worker {
    fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
        // --snip--

        let thread = thread::spawn(move || loop {
            let job = receiver.lock().unwrap().recv().unwrap();

            println!("Worker {id} got a job; executing.");

            job();
        });

        Worker {
            id,
            thread: Some(thread),
        }
    }
}


第一个错误在我们的 Drop 实现中。我们之前提到过,我们打算调用 Option 值的 take 来将线程移出 worker。以下更改将执行此作:


文件名: src/lib.rs

use std::{
    sync::{mpsc, Arc, Mutex},
    thread,
};

pub struct ThreadPool {
    workers: Vec<Worker>,
    sender: mpsc::Sender<Job>,
}

type Job = Box<dyn FnOnce() + Send + 'static>;

impl ThreadPool {
    /// Create a new ThreadPool.
    ///
    /// The size is the number of threads in the pool.
    ///
    /// # Panics
    ///
    /// The `new` function will panic if the size is zero.
    pub fn new(size: usize) -> ThreadPool {
        assert!(size > 0);

        let (sender, receiver) = mpsc::channel();

        let receiver = Arc::new(Mutex::new(receiver));

        let mut workers = Vec::with_capacity(size);

        for id in 0..size {
            workers.push(Worker::new(id, Arc::clone(&receiver)));
        }

        ThreadPool { workers, sender }
    }

    pub fn execute<F>(&self, f: F)
    where
        F: FnOnce() + Send + 'static,
    {
        let job = Box::new(f);

        self.sender.send(job).unwrap();
    }
}

impl Drop for ThreadPool {
    fn drop(&mut self) {
        for worker in &mut self.workers {
            println!("Shutting down worker {}", worker.id);

            if let Some(thread) = worker.thread.take() {
                thread.join().unwrap();
            }
        }
    }
}

struct Worker {
    id: usize,
    thread: Option<thread::JoinHandle<()>>,
}

impl Worker {
    fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
        let thread = thread::spawn(move || loop {
            let job = receiver.lock().unwrap().recv().unwrap();

            println!("Worker {id} got a job; executing.");

            job();
        });

        Worker {
            id,
            thread: Some(thread),
        }
    }
}


如第 17 章所述,Option 上的 take 方法接受 Some variant 退出,并在其位置上留下 None。我们使用 if let 来解构 Some 并获取线程;然后我们在线程上调用 join。如果 worker 的线程已经是 None,则我们知道 worker 已经清理了它的线程,因此在这种情况下不会发生任何事情。


向线程发出信号以停止侦听作业


通过我们所做的所有更改,我们的代码可以编译而没有任何警告。但是,坏消息是此代码尚未按我们想要的方式运行。关键是由 Worker 的线程运行的闭包中的逻辑 实例:目前,我们调用 join,但这不会关闭线程,因为它们会永远循环寻找作业。如果我们尝试将 ThreadPool 使用我们当前的 drop 实现,主线程将永远阻塞,等待第一个线程完成。


要解决此问题,我们需要更改 ThreadPooldrop 实现,然后在 Worker 循环中进行更改。


首先,我们将更改 ThreadPooldrop 实现,以便在等待线程完成之前显式删除发送方。示例 20-23 显示了对 ThreadPool 的更改,以显式删除 sender。我们使用相同的选项采用我们对线程所做的技术,以便能够将 sender 移出 ThreadPool


文件名: src/lib.rs

use std::{
    sync::{mpsc, Arc, Mutex},
    thread,
};

pub struct ThreadPool {
    workers: Vec<Worker>,
    sender: Option<mpsc::Sender<Job>>,
}
// --snip--

type Job = Box<dyn FnOnce() + Send + 'static>;

impl ThreadPool {
    /// Create a new ThreadPool.
    ///
    /// The size is the number of threads in the pool.
    ///
    /// # Panics
    ///
    /// The `new` function will panic if the size is zero.
    pub fn new(size: usize) -> ThreadPool {
        // --snip--

        assert!(size > 0);

        let (sender, receiver) = mpsc::channel();

        let receiver = Arc::new(Mutex::new(receiver));

        let mut workers = Vec::with_capacity(size);

        for id in 0..size {
            workers.push(Worker::new(id, Arc::clone(&receiver)));
        }

        ThreadPool {
            workers,
            sender: Some(sender),
        }
    }

    pub fn execute<F>(&self, f: F)
    where
        F: FnOnce() + Send + 'static,
    {
        let job = Box::new(f);

        self.sender.as_ref().unwrap().send(job).unwrap();
    }
}

impl Drop for ThreadPool {
    fn drop(&mut self) {
        drop(self.sender.take());

        for worker in &mut self.workers {
            println!("Shutting down worker {}", worker.id);

            if let Some(thread) = worker.thread.take() {
                thread.join().unwrap();
            }
        }
    }
}

struct Worker {
    id: usize,
    thread: Option<thread::JoinHandle<()>>,
}

impl Worker {
    fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
        let thread = thread::spawn(move || loop {
            let job = receiver.lock().unwrap().recv().unwrap();

            println!("Worker {id} got a job; executing.");

            job();
        });

        Worker {
            id,
            thread: Some(thread),
        }
    }
}


示例 20-23:在加入 worker 线程之前显式删除 sender


删除 sender 将关闭通道,这表示不会再发送任何消息。发生这种情况时,worker 在无限循环中对 recv 的所有调用都将返回错误。在示例 20-24 中,我们将 Worker loop 来正常退出循环,这意味着线程将 finish 当 ThreadPooldrop 实现调用 join 时。


文件名: src/lib.rs

use std::{
    sync::{mpsc, Arc, Mutex},
    thread,
};

pub struct ThreadPool {
    workers: Vec<Worker>,
    sender: Option<mpsc::Sender<Job>>,
}

type Job = Box<dyn FnOnce() + Send + 'static>;

impl ThreadPool {
    /// Create a new ThreadPool.
    ///
    /// The size is the number of threads in the pool.
    ///
    /// # Panics
    ///
    /// The `new` function will panic if the size is zero.
    pub fn new(size: usize) -> ThreadPool {
        assert!(size > 0);

        let (sender, receiver) = mpsc::channel();

        let receiver = Arc::new(Mutex::new(receiver));

        let mut workers = Vec::with_capacity(size);

        for id in 0..size {
            workers.push(Worker::new(id, Arc::clone(&receiver)));
        }

        ThreadPool {
            workers,
            sender: Some(sender),
        }
    }

    pub fn execute<F>(&self, f: F)
    where
        F: FnOnce() + Send + 'static,
    {
        let job = Box::new(f);

        self.sender.as_ref().unwrap().send(job).unwrap();
    }
}

impl Drop for ThreadPool {
    fn drop(&mut self) {
        drop(self.sender.take());

        for worker in &mut self.workers {
            println!("Shutting down worker {}", worker.id);

            if let Some(thread) = worker.thread.take() {
                thread.join().unwrap();
            }
        }
    }
}

struct Worker {
    id: usize,
    thread: Option<thread::JoinHandle<()>>,
}

impl Worker {
    fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
        let thread = thread::spawn(move || loop {
            let message = receiver.lock().unwrap().recv();

            match message {
                Ok(job) => {
                    println!("Worker {id} got a job; executing.");

                    job();
                }
                Err(_) => {
                    println!("Worker {id} disconnected; shutting down.");
                    break;
                }
            }
        });

        Worker {
            id,
            thread: Some(thread),
        }
    }
}


示例 20-24:显式跳出循环 recv 返回错误


为了查看这段代码的实际效果,让我们修改 main 只接受两个请求,然后优雅地关闭服务器,如示例 20-25 所示。


文件名: src/main.rs

use hello::ThreadPool;
use std::{
    fs,
    io::{prelude::*, BufReader},
    net::{TcpListener, TcpStream},
    thread,
    time::Duration,
};

fn main() {
    let listener = TcpListener::bind("127.0.0.1:7878").unwrap();
    let pool = ThreadPool::new(4);

    for stream in listener.incoming().take(2) {
        let stream = stream.unwrap();

        pool.execute(|| {
            handle_connection(stream);
        });
    }

    println!("Shutting down.");
}

fn handle_connection(mut stream: TcpStream) {
    let buf_reader = BufReader::new(&stream);
    let request_line = buf_reader.lines().next().unwrap().unwrap();

    let (status_line, filename) = match &request_line[..] {
        "GET / HTTP/1.1" => ("HTTP/1.1 200 OK", "hello.html"),
        "GET /sleep HTTP/1.1" => {
            thread::sleep(Duration::from_secs(5));
            ("HTTP/1.1 200 OK", "hello.html")
        }
        _ => ("HTTP/1.1 404 NOT FOUND", "404.html"),
    };

    let contents = fs::read_to_string(filename).unwrap();
    let length = contents.len();

    let response =
        format!("{status_line}\r\nContent-Length: {length}\r\n\r\n{contents}");

    stream.write_all(response.as_bytes()).unwrap();
}


示例 20-25:在提供两个请求后退出循环关闭服务器


您不希望实际的 Web 服务器在仅提供两个请求后关闭。此代码仅演示正常关闭和清理处于正常工作状态。


take 方法在 Iterator trait 中定义,并将迭代限制为最多前两项。ThreadPool 将在 main 结束时超出范围,并且 drop 实现将运行。


使用 cargo run 启动服务器,并发出 3 个请求。第三个请求应该出错,在您的终端中,您应该会看到类似于以下内容的输出:

$ cargo run
   Compiling hello v0.1.0 (file:///projects/hello)
    Finished dev [unoptimized + debuginfo] target(s) in 1.0s
     Running `target/debug/hello`
Worker 0 got a job; executing.
Shutting down.
Shutting down worker 0
Worker 3 got a job; executing.
Worker 1 disconnected; shutting down.
Worker 2 disconnected; shutting down.
Worker 3 disconnected; shutting down.
Worker 0 disconnected; shutting down.
Shutting down worker 1
Shutting down worker 2
Shutting down worker 3


您可能会看到打印的工作程序和消息的顺序不同。我们可以从消息中看到这段代码是如何工作的:worker 0 和 3 收到了前两个请求。服务器在第二个连接后停止接受连接,并且 ThreadPool 上的 Drop 实现甚至在工作程序 3 启动其作业之前就开始执行。删除发送方会断开所有工作程序的连接,并告诉它们关闭。每个工作线程在断开连接时打印一条消息,然后线程池调用 join 以等待每个工作线程完成。


请注意此特定执行的一个有趣方面:ThreadPool 删除了发件人,在任何 worker 收到错误之前,我们尝试加入 worker 0。Worker 0 尚未从 recv 收到错误,因此主线程阻塞等待 worker 0 完成。与此同时,工作线程 3 收到了一个作业,然后所有线程都收到了错误。当 worker 0 完成时,主线程等待其余 worker 完成。那时,他们都退出了他们的循环并停了下来。


恭喜!我们现在已经完成了我们的项目;我们有一个基本的 Web 服务器,它使用线程池来异步响应。我们能够正常关闭服务器,从而清理池中的所有线程。


以下是供参考的完整代码:


文件名: src/main.rs

use hello::ThreadPool;
use std::{
    fs,
    io::{prelude::*, BufReader},
    net::{TcpListener, TcpStream},
    thread,
    time::Duration,
};

fn main() {
    let listener = TcpListener::bind("127.0.0.1:7878").unwrap();
    let pool = ThreadPool::new(4);

    for stream in listener.incoming().take(2) {
        let stream = stream.unwrap();

        pool.execute(|| {
            handle_connection(stream);
        });
    }

    println!("Shutting down.");
}

fn handle_connection(mut stream: TcpStream) {
    let buf_reader = BufReader::new(&stream);
    let request_line = buf_reader.lines().next().unwrap().unwrap();

    let (status_line, filename) = match &request_line[..] {
        "GET / HTTP/1.1" => ("HTTP/1.1 200 OK", "hello.html"),
        "GET /sleep HTTP/1.1" => {
            thread::sleep(Duration::from_secs(5));
            ("HTTP/1.1 200 OK", "hello.html")
        }
        _ => ("HTTP/1.1 404 NOT FOUND", "404.html"),
    };

    let contents = fs::read_to_string(filename).unwrap();
    let length = contents.len();

    let response =
        format!("{status_line}\r\nContent-Length: {length}\r\n\r\n{contents}");

    stream.write_all(response.as_bytes()).unwrap();
}


文件名: src/lib.rs

use std::{
    sync::{mpsc, Arc, Mutex},
    thread,
};

pub struct ThreadPool {
    workers: Vec<Worker>,
    sender: Option<mpsc::Sender<Job>>,
}

type Job = Box<dyn FnOnce() + Send + 'static>;

impl ThreadPool {
    /// Create a new ThreadPool.
    ///
    /// The size is the number of threads in the pool.
    ///
    /// # Panics
    ///
    /// The `new` function will panic if the size is zero.
    pub fn new(size: usize) -> ThreadPool {
        assert!(size > 0);

        let (sender, receiver) = mpsc::channel();

        let receiver = Arc::new(Mutex::new(receiver));

        let mut workers = Vec::with_capacity(size);

        for id in 0..size {
            workers.push(Worker::new(id, Arc::clone(&receiver)));
        }

        ThreadPool {
            workers,
            sender: Some(sender),
        }
    }

    pub fn execute<F>(&self, f: F)
    where
        F: FnOnce() + Send + 'static,
    {
        let job = Box::new(f);

        self.sender.as_ref().unwrap().send(job).unwrap();
    }
}

impl Drop for ThreadPool {
    fn drop(&mut self) {
        drop(self.sender.take());

        for worker in &mut self.workers {
            println!("Shutting down worker {}", worker.id);

            if let Some(thread) = worker.thread.take() {
                thread.join().unwrap();
            }
        }
    }
}

struct Worker {
    id: usize,
    thread: Option<thread::JoinHandle<()>>,
}

impl Worker {
    fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
        let thread = thread::spawn(move || loop {
            let message = receiver.lock().unwrap().recv();

            match message {
                Ok(job) => {
                    println!("Worker {id} got a job; executing.");

                    job();
                }
                Err(_) => {
                    println!("Worker {id} disconnected; shutting down.");
                    break;
                }
            }
        });

        Worker {
            id,
            thread: Some(thread),
        }
    }
}


我们可以在这里做得更多!如果您想继续增强此项目,这里有一些想法:


  • ThreadPool 及其公共方法添加更多文档。

  • 添加对库功能的测试。

  • 将对 unwrap 的调用更改为更可靠的错误处理。

  • 使用 ThreadPool 执行除提供 Web 请求之外的其他任务。

  • crates.io 上找到一个线程池 crate,并使用该 crate 实现类似的 Web 服务器。然后将其 API 和健壮性与我们实现的线程池进行比较。


总结


干的好!你已经读到书的结尾了!我们要感谢你加入我们的 Rust 之旅。你现在已经准备好实现自己的 Rust 项目并帮助其他人的项目了。请记住,有一个由其他 Rustacean 组成的热情社区,他们很乐意帮助你解决你在 Rust 之旅中遇到的任何挑战。